Teaching Assembly Language Using HLA

Randall Hyde
rhyde@cs.ucr.edu
http://webster.cs.ucr.edu

| first began teaching assembly language programming at Cal Poly Pomona in the Winter Quarter
of 1987. | quickly discovered that good pedagogical material was difficult to come by; even the
textbooks available for the course left something to be desired. As a result, my students were
learning very little assembly language in the ten weeks available to the course. After about two
guarters, | decided to do something about the textbook problem, so | began writing a text | entitled
“How to Program the IBM PC Using 8088 Assembly Language” (obviously, this was back in the
days when schools still used PCs made by IBM and the main CPU you could always count on was
the 8088). “How to Program...” became the epitome of a “work in progress.” Each quarter |
would get feedback from the students, update the text, and give it to Kinko’s (and the UCR Print-
ing and Reprographics Department) to run off copies for my students the very next quarter.

The original “How to Program...” text provide a basic set of library routines to print strings, input
characters and lines of text, and a few other basic functions. This allowed the students to quickly
begin writing programs without having to learn about the INT instruction, DOS, or BIOS. How-
ewer, | discovered that students were spending a significant time each quarter writing their own
numeric conversion routines, string manipulation routines, etc. One student commented on “how
much easier it was to program in ‘C’ than assembly language since all those conversions and
string operations were built into the language.” | replied that the real savings were due more to
the ‘C’ standard library than the language itself and that a comparable library for assembly lan-
guage programmers would make assembly language programming almost as easy as ‘C’ pro-
gramming. At that moment a little light when on in my head and | sat down and wrote the first
few routines of what ultimately became the “UCR Standard Library for 80x86 Assembly Lan-
guage Programmers” (You can still get a copy of the UCR stdlib from webster at the URL given
above). As | finished each group of routines in the standard library, | incorporated them into my
courses. This reaped immediate benefits as students spent less time writing numeric conversion
routines and spent more time learning assembly language. My students were getting into far more
advanced topics than was possible before the advent of the UCR Stdlib.

In the early 1990's, the 8088 CPU finally died off and IBM was no longer the major supplier of
PCs. Not only was it time to change the title of my text, but | needed to update references to the
8088 (that were specific to that chip) and bring the text into the world of the 80386 and 80486 pro-
cessors. DOS was still King and 16-bit code was still what everyone was writing, but issues of
optimization and the like were a little outdated in the text. In addition to the changes reflecting the
new Intel CPUs, | also incorporated the UCR Standard Library into the text since it dramatically
improved the speed at which students progressed beyond the basic assembly programming skills.
| entitled the new version of the text “The Art of Assembly Language Programming,” an obvious
knock-off of Knuth’s series (“The Art of Computer Programming”).

In early 1996 it became obvious to me that DOS was finally dying and | needed to modify “The
Art of Assembly Language Programming” (AoA) to use Windows as the development platform. |
wasn’t interested in having students write Windows GUI applications in assembly language (the
time spent teaching event-oriented programming would interfere with the teaching of basic
machine organization and assembly language programming), but it was clear that the days of writ-
ing code that arbitrarily pokes around in memory and accesses I/O addresses directly (things that
AOA taught) were nearly over. So | decided to get started on a new version of AoA that used Win-
dows as the basic development environment with the emphasis on writing console applications.

The UCR Standard Library was the single most important pedagogical tool I'd discovered that
dramatically improved my students’ progress. As | began work on a new version of AoA for Win-
dows 3.1 my first task was to improve upon the UCR Standard Library to make it even easier to
use, more flexible, more efficient, and more “high level.” After six months of part time work |
eventually gave up on the UCR Stdlib v2.0. The idea was right, unfortunately the tools at my dis-
posal (specifically, MASM 6.11) weren't quite up to the task at hand. | was writing some really
tricky macros, obviously exploiting code inside MASM that Microsoft’s engineers had never run
(i.e., I discovered lots of bugs). | would code in some workarounds to the defects only to have the
macro package break at the next minor patch of MASM (e.g., from MASM 6.11a to MASM
6.11b). There was also a robustness issue. Although MASM’s macro capabilities are quite pow-
erful and italmost let me do everything | wanted, it was very easy to confuse the macro package
and then MASM would generate some totally weird (but absolutely correct) diagnostic messages
that correctly described what was going wrong in the macro but made absolutely no sense whatso-
ewer at all to a beginning assembly language student who use using the macro to print some data
to the console device. As it became clear that the UCR Stdlib v2.0 would never be robust enough
for student use, | decide to take a different approach.

About this time, | was talking with my Department Chair about the assembly language course.
We were identifying some of the problems that students had learning assembly language. One
problem, of course, was the paradigm shift- learning to solve problems using machine language
rather than a high level language. The second problem we identified is that students get to apply
very little of what they’ve learned from other courses to the assembly language class. A third
problem was the primitive tools available to assembly language programmers. Energized by this
discussion, | decided to see how I could solve these problems and improve the educational pro-
cess.

Problem one, the paradigm shift, had to be handled carefully. After all, the whole purpose of hav-
ing students take an assembly language programming course in the first place is to acquaint them
with the low-level operation of the machine. However, | felt it was certainly possible to redefine
parts of assembly language so that would be more familiar to students. For example, one might
test the carry flag after an addition to determine if an unsigned overflow has occurred using code
like the following:

add eax, 5
jnc NoOverfl ow
<< code to execute if overflow occurs >>
NoOver f | ow.

Although this code is fairly straight-forward, you would be surprised how many students cannot
visualize this code on their own. On the other hand, if you feed them some pseudo code like:

add eax, 5
if(the carry flag is set) then

<< code to execute if overflow occurs >>
endi f

Those same students won’t have any problems understanding this code. To take advantage of this
difference in perspective, | decided to explore changing the definition of assembly language to
allow the use of the “if condition then do something” paradigm rather than the “if a condition is
false them skip over something” paradigm. Fundamentally, this does not change the material the
student has to learn; it just presents it from a different point of view to which they're already
accustomed. This certainly wasn't a gigantic leap away from assembly language as it existed in
1996. After all, MASM and other assemblers were already allowing statements like “.if” and
“.endif” in the code. So | tried these statements out on a few of my students. What | discovered is
that the students picked up the basic “high level” syntax very rapidly. Once they mastered the
high level syntax, they were able to learn the low-level syntax (i.e., using conditional jumps)
faster than ever before. What | discovered is something that Nicoderm CQ is pushing for their
smoking cessation program: “learning assembly language in graduated steps (from high level to
low level) is easier than going about it ‘cold turkey.”

The second problem, students not being able to leverage their programming skills from other
classes, is largely linked to the syntax of Intel x86 assembly language. Many skills students pick
up, such as programming style, indentation, appropriate programming construct selection, etc.,
are useless in a typically assembly language class. Even skills like commenting and choosing
good variable names are slightly different in assembly language programs. As a result, students
spend considerable (unproductive) time learning the new “rules of the game” when writing
assembly language programs. This directly equates to less progress over the ten week quarter.
Ideally, students should be able to applying knowledge like program style, commenting style,
algorithm organization, and control construct selection they learned in a C/C++ or Pascal course
to their assembly language programs. If they could, they’d be “up and writing” in assembly lan-
guage much faster than before.

The third problem with teaching assembly language is the primitive state of the tools. While
MASM provides a wonderful set of high level language control constructs, very little else about
MASM supports this “brave new world” of assembly language | want to teach. For example,
MASM’s variable declarations leave a lot to be desired (the syntax is straight out of the 1960's).
As | noted earlier, as powerful as MASM'’s macro facilities are, they weren't sufficient to develop

a robust library package for my students. | briefly looked at TASM, but it’s “ideal” mode fared lit-
tle better than MASM. Likewise, while development environments for high level languages have
been improving by leaps and bounds (e.g., Delphi and C++ Builder), assembly language program-
mers are still using the same crude command line tools popularized in the early 1970’s. Code-

view, which is practically useless under Windows, is the most advanced tool Microsoft provides
specifically for assembly language programmers.

Faced with these problems, | decided the first order of business was to create a new x86 assembly
language and write a compiler for it. | decided to give this language the somewhat-less-than-orig-
inal name of “the High Level Assembler,” or HLA (IBM and Motorola both already have assem-
blers that use a variant of this name). It took three years, but the first version of HLA was ready
for public consumption in September of 1999.

| began using HLA in my CS 61 course (machine organization and assembly language program-
ming) at UCR in the Fall Quarter, 1999. With no pedagogical material other than a roughly writ-
ten reference guide to the language, | was expecting a complete disaster. It turns out that | was
pleasantly surprised. Although the students did have major problems, the course went far more
smoothly than | anticipated and we managed to cover about the same material | normally covered
when using MASM.

Although things were going far better than | expected, this is not to say that things were going
great, or even as smoothly as | would have liked. The major problem, of course, was the lack of a
textbook. The only material the students had to study from were their lecture notes. Clearly
something needed to be done about this. Of course, the whole reason for spending three years
writing HLA was to allow me to write a new version of AoA. So in November, 1999, | began

work on the new edition of the text. By the start of the Winter Quarter in January, 2000, | had
roughed together five chapters, about 50% of the material was brand new, the other 50% was cut,
pasted, and updated from the older version of the text. During the quarter | rushed out two more
chapters bringing the total to seven. The Winter Quarter went far more smoothly than the Fall
Quarter. Student projects were much better and the progress of the class outstripped any assembly
language course I'd taught prior to that point. Clearly the class was benefiting from the use of
HLA.

By the start of the Spring Quarter in April, 2000, I'd managed to make one proofreading pass over
the first six chapters and I'd written the first draft of the eighth chapter. By the Winter Quarter
2001, I'd split the text into volumes and supplied five chapters for volume one, eight for volume
two, and thirteen chapters each for volumes three and four. Although this is far more material
than one course can cover, the extra material gives instructors flexibility with respect to what they
want to teach. Certainly the first four volumes of AoA cover all the essential material most
instructors want to teach in an assembly course.

Well, this has been a long-winded report of HLA's justification. You're probably wondering what
HLA is and whether it is applicable to you (especially if you're a programmer rather than an edu-
cator). Fair enough, the rest of this article will discuss the HLA system and how you would use it.

HLA is a technically a compiler, not an assembler. HLA v1.x converts an HLA source file into a
MASM-compatible assembly language source file. This MASM file is then assembled and linked
to produce a Win32 executable file. The HLA compiler automatically runs the assembler and
linker, so these steps are transparent to the HLA user (other than the few extra seconds it takes to
assemble and link the output file). This whole process takes only a few seconds (for example,

compiling, assembling, and linking the 750-line “x2p.hla” program in the HLA examples direc-
tory only takes about two seconds on a 266 MHz Pentium Il system with UW SCSI drives). | am
planning to emit object code directly in version 2.0 of HLA. Until then, an HLA user will need
Microsoft's MASM and linker. For those who would prefer to have HLA generate code for
TASM, NASM, or some other assembler, the HLA compiler source code is available, have fun :-).

HLA is a Win32 console application and it generates Win32 applications. By default, it generates
console applications although it does not restrict you to writing console applications under Win-
dows. There is absolutely no support for DOS applications. While it is possible to write Linux
applications with only minor changes to HLA, the development process for Linux applications is
convoluted and hardly worthwhile. HLA v2.0 will address portability across 32-bit x86 operating
systems. For now, using HLA is practical only under Win32 OSes (Win 95, 98, NT, and 2000).

When designing the HLA language, | chose a syntax that is very similar to common imperative
high level languages like Pascal/Delphi, Ada, Modula-2, FORTRAN77, C/C++, and Java. That is
not to say that HLA compiles Pascal programs, but rather, a Pascal programmer will note many
similarities between Pascal and HLA (and ditto for the other languages). HLA stole many of the
ideas for data declarations from the Algol based languages (Pascal, Modula-2, and Ada), it
grabbed the ideas for many of its control structures from FORTRAN77, Ada, and C/C++/Java,
and the structure of the HLA Standard Library is based on the C Standard Library. So regardless
of which high level language you're most comfortable with in this set, you'll certainly recognize
some elements of your favorite HLL in HLA.

A carefully written HLA program will look almost exactly like a high level language program.
Consider the following sample program:

program Sanpl eHLApgm
#incl ude("stdlib.hhf")

const
Hel loWwrld := "Hello Worl d";

begi n Sanpl eHLApgm

st dout . put
(

"The classical '"Hello Wrld program ",
Hel | oWor | d,
nl

)
end Sanpl eHLApgm

This program does the obvious thing. Anyone with any high level language background can prob-
ably figure out everything except the purpose of “nl” (which is the newline string imported by the

standard library). This certainly doesn’t look like an assembly language program; there isn’t
even a real machine instruction in sight. Of course, this is a trivial example; nonetheless, I've
managed to write reasonable HLA programs that were just over 1,000 lines of code that contained
only one or two identifiable machine language instructions. If it's possible to do this, how can |
get away with calling HLA an assembly language?

The truth is, you can actually write a very similar looking program with MASM. Here’s an exam-
ple I trot out for unbelievers. This code is compilable with MASM (assuming you include the
UCR Standard Library v2.0 and some additional code I've cut out for brevity:

var
enum col ors, <red, green, bl ue>
colors cl1, c2
endvar
Mai n pr oc
nov ax, dseg
nov ds, ax
nov es, ax
Meni ni t
I ni t Except
Enabl eExcept
finit
try
cout "Enter two colors:"
cin cl, c2
cout "You entered ",cl," and ", c2,nl

i f cl == red
cout “cl was red”
.endif

except $Conversi on
cout "Conversion error occured", nl

except $Overfl ow
cout "Overflow error occured", nl

endtry

G eanUpEXx

Exi t Pgm ; DOS macro to quit program
Mai n endp

As you can see, the only identifiable machine instructions here are the ones that initialize the seg-
ment registers at the beginning of the program (which is unnecessary in a Win32 environment).
So let me blunt criticism from “die-hard” assembly fans right at the start: HLA doesn’t open up

all kinds of new programming paradigms that weren’t possible before. With some really clever
macros (e.g., enum, cout, and cin in the MASM code), it is quite possible to do some really amaz-
ing things. If you're wondering why you should bother with HLA if MASM is so wonderful,

don’t forget my comments about the robustness of these macros. Both HLA and MASM (with the
UCR Standard Library v2.0) work great as long as you write perfect code and don’t make any
mistakes. However, if you do make mistakes, the MASM macro scheme gets ugly real quick.

The “die-hard” assembly fan will probably make the observation that they would never write code
like the MASM code I've presented above; they would write traditional assembly code. They
want to write traditional code. Thejon't want this high level syntax forced upon them. Well,

HLA doesn't force you to use high level control structures rather than machine instructions. You
can always write the low level code if you prefer it that way. Here is the original HLA program
rewritten to use familiar machine instructions:

pr ogr am Sanpl eHLApgn?;
#i nclude("stdlib.hhf")

dat a
dword 37, 37;
TcHWSt r: dword;
byte "The classical "Hello Wrld" program ",0,0,O;

dword 11, 11;
HA\St r: dwor d;
byte "Hello Wrld", O;

begi n Sanpl eHLApgn®;
| ea(eax, TcHWStr);
push(eax);
call stdout. puts;
| ea(eax, HWtr);
push(eax);
call stdout. puts;

cal | stdout.new n;

end Sanpl eHLApgn®;

The stdout.puts and stdout.newln procedures come from the HLA Standard Library. | will leave it
up to the interested reader to translate these into Win API Write calls if this code isn’t sufficiently
low level to satisfy. Note that HLA strings are not simple zero terminated strings like C/C++.
This explains the extra zeros and dword values in the DATA section (the dword values hold the
string lengths; | offer these without further explanation, see the HLA documentation for more
details on HLA's string format).

One thing you've probably noticed from this second example is that HLA uses a functional nota-
tion for assembly language statements. That is, the instruction mnemonics look like function calls
in a high level language and the operands look like parameters to those functions. The neat thing
about this notation is that it easily allows the useimdtf'uction composition.” Instruction com-

position, like functional composition, means that you get to use one instruction as the operand of
another. For example, an instruction like “mov(mov(0, eax), ebx);” is perfectly legal in HLA.
The HLA compiler will compile the innermost instruction first and then substitute the destination
operand of the innermost instruction for the operand position occupied by the instruction. HLA's
MOV instruction takes the generic form “MOV(source, destination);” so the former instruction
translates to the following two instruction sequence:

mov(0, eax); /lintel syntax: mov eax, O
mov(eax, ebx); // intel syntax: mov ebx, eax

By and of itself, instruction composition is somewhat interesting, but programmers striving to
write readable code need to exercise caution when using instruction composition. It is real easy to
write some really unreadable code if you abuse instruction composition. E.g., consider:

mov(add(mov(0, eax), sub(ebx, ecx)), edx), mov(i, esi)); //Hopefully | got this right!

Egads! What does this mess do? Some might consider the inclusion of instruction composition in
HLA to be a fault of the language if it allows you to write such unreadable code. However, I've
never felt it was the language syntax’s job to enforce good programming style. If there’s really a
reason for writing such messy code, the compiler shouldn’t prevent it.

Although you can produce some truly unreadable messes with instruction composition, if you use
it properly it can enhance the readability of your programs. For example, HLA lets you associate
an arbitrary string with a procedure that HLA will substitute for that procedure name when the
procedure call appears as an operand of another instruction. Most functions that return a value in
a register specify that register name as their “returns” string (the string HLA substitutes for the
procedure call). For example, the “str.eq(strl, str2)” function compares the two string operands
and returns true or false in AL depending on the result of the comparison. This allows you to
write code like the following:

if(str.eq(strl, “Hello™)) then

stdout.put(“strl = ‘Hello™” nl);
endif;
HLA directly translates the IF statement into the following sequence:

str.eq(strl, “Hello”);
if(al') then

stdout.put(“strl= ‘Hello™” nl);
endif;

(If a register name appears where a boolean expression is expected, as AL does in the IF statement
above, HLA emits a TEST instruction to see if the register contains a non-zero value.)

Arguably, the former version is a little more readable than the latter version. Instruction composi-
tion, when you use it in this fashion, lets you write code that “looks” a little more high level with-
out the compiler having to generate lots of extra code (as it would if HLA supported a generalized
arithmetic expression parser).

Like MASM, HLA supports a wide variety of high level control structures. HLA' set is both
higher level and lower level at the same time. There are two reasons HLAs control structures
aren’t always as powerful as MASM’s. First, with the sole exception of object method invoca-
tions, | made a rule that HLA's high level control structures would not modify any general purpose
registers behind the programmer’s back. MASM, for example, may modify the value in EAX for
certain boolean expressions it must compute. Second, remember that the primary goal of HLA is
to teach assembly language; yes, it's supposed to ease the learning curve, but still the goal is to
teach assembly language. It is possible to get carried away with the high level language features
and then wind up with an “assembler” that lets students write their assembly language programs
in a high level language. In general, most HLA boolean expressions compile into two instruc-
tions: a CMP and a conditional jump.

Although I designed HLA as a tool to teach assembly language programming, this is also a tool
that | intend to use so | included lots of goodies for advanced assembly language programmers.
For example, HLA's macro facilities are more powerful than I've seen in any programming lan-
guage based macro processor. One unique feature of HLA's macro preprocessor is the ability to
create “context free” control structures using macros. For example, suppose that you decide that
you need a new type of looping construct that HLA doesn’t provide; let’s say, a loop that will
repeat once for each character in a string supplied as a parameter to the loop. Let’s call this loop
“OnceForEachChar” and decide on the following syntax:

OnceFor EachChar (SoneString)

<< Loop Body >>

endOnceFor EachChar ;
On each iteration of this loop, the AL register will contain the corresponding character from the
string specified as the OnceForEachChar operand. You can easily implement this loop using the
following HLA macro:

macr o OnceFor EachChar(SomeString): TopOf Loop, LoopExit;

pushd(-1); /1 index into string.
TopOf Loop:
inc((type dword [esp])); /1 Bunp up index into string.

#if(@sConst(SoneString))

| ea(eax, SomeString); /1 Load address of string
/'l constant into EAX

#el se
nmov(SomeString, eax); /'l Get ptr to string.

#endi f

add([esp], eax); /1l Point at next avail able
/'] character

nmov([eax], al); Il Get the next avail able
/| character

cnp(al, 0); /Il See if we're at the end
I/ of the string

j e LoopExit;

term nat or endOnceFor EachChar ;

j mp TopOf Loop; /! Return to the top of the
/1 1oop and repeat.
LoopExi t:
add(4, esp); /'l Renbve index into string from stack.
endmacr o;

Anyone familiar with MASM’s macro processor should be able to figure out most of this code.
Note that the symbols “TopOfLoop” and “LoopEXxit” are local symbols to this macro. Hence, if
you repeat this macro several times in the code, HLA will emit different actual labels for these
symbols to the MASM output file. The “@IsConst” is an HLA compile-time function that returns
true if its operand is a constant. Obtaining the address for a constant is fundamentally different
than obtaining the address of a string variable (since HLA string variables are actually pointers to

the string data). The most interesting feature of this macro definition is the “terminator” line.

This actually defines a second macro that is active only after HLA encounters the “OnceForEach-
Char” macro and control returns to the first statement after the OnceForEachChar invocation.
Invocation of “context free” macros always occur in pairs; that is, for every “OnceForEachChar”
invocation there must be a matching “endOnceForEachChar” invocation. The following program
demonstrates this macro in use, it also demonstrates that you can nest this newly created control
structure in your program:

pr ogr am Sanpl eHLApgnB;
#i ncl ude("stdlib.hhf")
macr o OnceFor EachChar (SomeString): TopOf Loop, LoopExit;
pushd(-1); /1 index into string.
TopOF Loop:
inc((type dword [esp]));:
#if(@sConst(SoneString))
| ea(eax, SonmeString);
#el se
nmov(SonmeString, eax);
#endi f
add([esp], eax);
nov([eax], al);
cnp(al, 0);
j e LoopExit;

term nat or endOnceFor EachChar ;

j mp TopOF Loop;

LoopExi t:
add(4, esp);
endnacr o;
static
strvar: string :=":" nl;

begi n Sanpl eHLApgn8;

OnceFor EachChar ("Hel | 0")

stdout.putc(al);
OnceFor EachChar (strVar)

stdout.putc(al);
endOncefFor EachChar ;

endOnceFor EachChar ;
end Sanpl eHLApgn8;
This program produces the output:

H:
e:
| .
I

0

Here’s the MASM code the compiler emits for the sequence above (the “strings” segment was
moved for clarity):

strings segment page public 'data
align 4
?635 | en dword 5
dword 5
?635_str byt e "Hell 0",0,0,0
strings ends
pushd -1
?634_ 0278 :
i nc dword ptr [esp+0] ; (type dword [esp])
| ea eax, 7?7635 str
add eax, [esp+0] ;[esp]
nov al, [eax+0] ;[eax]
cnp al, 0

je 2636 0279

push eax

cal | stdio_putc ; putc
pushd -1
?639_ 027d_:
i nc dword ptr [esp+0] ; (type dword [esp])
nov eax, dword ptr ?630_strVar[0O] ;strVar
add eax, [esp+0] ;[esp]
nov al, [eax+0] ;[eax]
cnp al, 0
je ?640__ 027e_
push eax
cal | stdio_putc ; putc
jnp ?639_ 027d_
?640__027e_:
add esp, 4
j mp ?634_ 0278 _
?636_ 0279 :
add esp, 4

In addition to the “terminator” clause, HLA macros also support a “keyword” clause that let you
bury reserved words within a context-free language construct. For example, the HLA language
does not provide a SWITCH/CASE statement. This omission was intentional. Rather than build
the SWITCH/CASE statement into the HLA language, | implemented the SWITCH .. CASE ..
DEFAULT .. ENDCASE statement using HLA's macro facilities (as a demonstration of HLA's

power). An HLA SWITCH statement takes the following form:

switch(reg32)

case(constantListl)
<< statenents >>

case (constantList2)
<< statenents >>

default // This is optional
<< statenents >>

endswi t ch;

The switch macro implements the “switch” and “endswitch” reserved words using the macro and
terminator clauses in the macro declaration. It implements the “case” and “default” reserved
words using the HLA “keyword” clause in a macro definition. The “keyword” clause is similar to
the “terminator” clause except it doesn’t force the end of the macro expansion in the invoking
code. The actual code for the HLA SWITCH statement is a little too complex to present here, so
| will extend the example of the OnceForEachChar macro to demonstrate how you code use the
“keyword” clause in a macro.

Let’s suppose you wanted to add a “_break” clause to the “OnceForEachChar” loop (I'm using
“_break” with an underscore because “break” is an HLA reserved word). You could easily modify
the “OnceForEachChar” macro to achieve this by using the following code:
macr o OnceFor EachChar (SomeString): TopOf Loop, LoopExit;
pushd(-1); /1 index into string.
TopOf Loop:
inc((type dword [esp]));
#if(@sConst(SoneString))
| ea(eax, SoneString);
#el se
nmov(SonmeString, eax);
#endi f
add([esp], eax);
nov([eax], al);
cnp(al, 0);
j e LoopExit;

keyword _break;
j mp LoopExit;

t erm nat or endOnceFor EachChar ;
jmp TopOf Loop;

LoopExi t:
add(4, esp);

endnacr o;

The “keyword” clause defines a macro (*_break”) that is active between the “OnceForEachChar”
and “endOnceForEachChar” invocations. This macro simply expands to a jmp instruction that

exits the loop. Note that if you have nested “OnceForEachChar” loops and you “_break” out of
the innermost loop, the code only jumps out of the innermost loop, exactly as you would expect.

HLA's macro facilities are part of a larger feature | refer to as the “HLA Compile-Time Lan-
guage.” HLA actually contains a built-in interpreter than executes while it is compiling your pro-
gram. The compile-time language provides conditional compilation (the #IF.. #ELSE.. #ENDIF
statements in the previous example), interpreted procedure calls (macros), looping constructs
(#WHILE. #ENDWHILE), a very powerful constant expression evaluator, compile-time 1/O facil-
ities (#PRINT, #ERROR, #INCLUDE, and #TEXT.. #ENDTEXT), and dozens of built-in compile
time functions (like the @IsConst function above).

The HLA built-in string functions (not to be confused with the HLA Standard Library’s string
functions) are actually powerful enough to let you write a compiler for a high level language com-
pletely within HLA. | mentioned earlier that it is possible to write an expression compiler within
HLA; | was serious. The HLA compile-time language will let you write a sophisticated recursive
descent parser for arithmetic expressions (and other context-free language constructs, for that
matter).

HLA is a great tool for creating low-level Domain Specific Embedded Languages (DSELS).
DSELs are mini-languages that you create on a project by project basis to help reduce develop-
ment time. HLA's compile time language lets you create some very high level constructs. For
example, HLA implements a very powerful string pattern matching language in the “patterns”
module found in the HLA Standard Library. This module lets you write pattern matching pro-
grams that use techniques found in language like SNOBOL4 and Icon. As a final example, con-
sider the following HLA program that translate RPN (reverse polish notation) expressions into
their equivalent assembly language (HLA) statements and displays the results to the standard out-
put:

/1 This programtranslates user RPN input into an
/'l equival ent sequence of assenbly |anguage instrs (HLA fnt).

program RPNt oASM

#include("stdlib.hhf");

static
S: string;
oper and: string;
St ar t Qper and: dwor d;

macro nmark;

mov(esi, StartOperand);

endnacr o;
macr o del et e;

nov(Start Qperand, eax);
sub(eax, esi);

inc(esi);

sub(s, eax);

str.delete(s, eax, esi);

endnacr o;

procedure length(s:string); returns("eax"); nodisplay;
begi n | engt h;

push(ebx);

mov(s, ebx);

nmov((type str.strRec [ebx]).length, eax);
pop(ebx);

end | engt h;

begi n RPNt 0ASM

stdout.put("-- RPN to assenbly --" nl);
forever

stdout.put(nl nl "Enter RPN sequence (enpty line to
quit): ");

stdin.a_gets();

nov(eax, S);

breakif(length(s) =0);

while(length(s) <> 0) do

pat. match(s);
// NMatch identifiers and nuneric constants

mar K;
pat . zer oO Mor eW&() ;

pat.oneOr MoreCset({'a'.."z', "A.."Z, '0..

)
pat.a_extract(operand);
stdout. put (" pushd(", operand, ");" nl
strfree(operand);

del et e;
pat . al t er nat e;
/1l Handle the "+" operator.

mar K;
pat . zer oO Mor eW&() ;
pat.oneChar('+);
st dout . put
(

pop(eax);" nl

add(eax, [esp]);" nl
)

del et e;
pat . al t er nat e;
/1 Handl e the '-' operator

mar k;
pat . zer oO Mor eW&() ;
pat.oneChar('-');
st dout . put
(
pop(eax);" nl
pop(ebx);" nl
sub(eax, ebx);" nl
push(ebx);" nl
)

del et e;
pat . al t ernat e;
/1 Handle the '*' operator.

mar K;
pat . zer oO Mor eW&() ;
pat.oneChar('*');
st dout . put
(

pop(eax);" nl

imul (eax, [esp]);" nl
)

del et e;

pat . al t er nat e;
/1 handle the '/' operator.
mar K;

pat. zer oO Mor eWs() ;
pat.oneChar('/');

st dout . put
(
! pop(ebx);" nl
! pop(eax);" nl
cdqg(); " nl

" idiv(ebx, edx:eax);" nl
push(ebx);" nl
)

del et e;
pat.if_failure
/1 If none of the above, it nust be an error.
stdout.put(nl "Illegal RPN Expression” nl);
nmov(s, ebx);
mov(O, (type str.strRec [ebx]).length);
pat . endmat ch;
endwhi | e;

endf or;

end RPNt 0ASM

Consider for a moment the code that matches an identifier or an integer constant:

mar K;

pat . zer oO Mor eWs() ;

pat.oneOrMoreCset({'a'..'z", "A.."Z, '0".."9", " "}),
pat.a_extract(operand);

stdout. put(" pushd(", operand, ");" nl);

strfree(operand);

del et e;

The “mark;” invocation saves a pointer into the “s” string where the current identifier starts. The
pat.ZeroOrMoreWS pattern matching function skips over zero or more whitespace characters.

The pat.OneOrMoreCset pattern match function matches one or more alphanumeric and under-
score characters (a crude approximation for identifiers and integer constants). The pat.a_extract
function makes a copy of the string between the “mark” and the “a_extract” calls (this corre-
sponds to the whitespace and identifier/constant). The stdout.put statement emits the HLA
machine instruction that will push this operand on to the x86 stack for later computations. The
remaining statements clean up allocated string storage space and delete the matched string from
“s”.

Although the “pat.xxxxx” statements look like simple function calls, there’s actually a whole lot
more going on here. HLA's pattern matching facilities, like SNOBOL4 and Icon, sigpcass,

failure, and backtracking. For example, if the pat.oneOrMoreChar function fails to match at least
one character from the set, control does not flow down to the pat.a_extract function. Instead, con-
trol flows to the next “pat.alternate” or “pat.if_failure” clause. Some calls to HLA pattern match-
ing routines may even cause the program to back up in the code and reexecute previously called
functions in an attempt to match a difficult pattern (i.e., the backtracking component). This article
is not the place to get into the theory of pattern matching; however, these few examples should be
sufficient to show you that something really special is going on Aexkall these facilities were

devel oped using the HLA compile-time language. This should give you a small indication of what

is possible when using the HLA compile time language facilities.

The HLA language is far too rich to describe in this short article (the *very* rough documentation
for the language is nearly 300 pages long). For more information, check out the on-line documen-
tation for HLA at http://webster.cs.ucr.edu. Someday, you'll also be able to learn about HLA via
“The Art of Assembly Language Programming, HLA/Windows version.” | will keep interested
individuals updated on the progress of AOA at the Webster web site.

HLA is totally free. Itis public domain software and there are no restrictions on its use, the use of
the HLA standard library, or the HLA compiler source code. Do whatever you want with it and
have a lot of fun!

