
x86 Basic Instructions, no x87FPU, MMX, SSE
Fixed Point Arithmetic Operations (Addition, Subtraction, Comparison, Multiplication and Division)

ADD O S Z A C P
Add without Carry, Adds the destination and source operand and stores the result in the destination operand. The operands (dest \ source) can
be Reg 8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32. If Imm is used as operand, and the Imm value is shorter than
the destination operand, the Imm value is sign extended.

ADC O S Z A C P
Add with Carry, Adds CF, source and destitution operand and stores the result in the destination operand. The operands (dest \ source) can be
Reg8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32.If Imm is used as operand, and the Imm value is shorter than the
destination operand, the Imm value is sign extended. ADC EAX, 0 increases EAX by 1 if CF is set.

SUB O S Z A C P
Subtract, Subtracts the source from the destination operand and stores the result in the destination operand. The operands (dest \ source) can be
Reg 8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32. If Imm is used as operand, and the Imm value is shorter than the
destination operand, the Imm value is sign extended.

CMP O S Z A C P
Compare Two Operands, Compares the first operand with the second operand by subtracting the second operand from the first operand without
storing the result. The operands (dest \ source) can be Reg8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32.If Imm is
used as operand, and the Imm value is shorter than the destination operand, the Imm value is sign extended. All flags are set according to the
result of the subtraction which isn't stored.

SBB O S Z A C P
Subtract with Carry, Subtracts the source and the CF from the destination operand and stores the result in the destination operand. The
operands (dest \ source) can be Reg 8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32. If Imm is used as operand, and the
Imm value is shorter than the destination operand, the Imm value is sign extended. SBB EAX, 0 decreases EAX by 1 if CF is set

MUL O s z a C p
Unsigned Multiply, Performs an unsigned multiplication of AL\AX\EAX by Reg\Mem 8\16\32 in the operand and stores the result in the
AH:AL\DX:AX\EDX:EAX register pair. If the upper half of the result is 0, OF and CF are set to 0, if the upper half of the result≠0, OF and CF are set
to 1

IMUL O s z a C p

Signed Multiply, Performs an signed multiplication of one, two or three operands.
One Operand: Performs a signed multiplication of AL\AX\EAX by Reg\Mem 8\16\32 in the operand and stores the result in the
AH:AL\DX:AX\EDX:EAX register pair. If the upper half of the result is 0, OF and CF are set to 0, if the upper half of the result≠0, OF and CF are set
to 1
Two Operands: The first operand Reg 16\32 is signed multiplied by the second operand Reg\Mem 16\32 or Imm8 and the result is stored in the
first operand. If the result is greater than the first operand, only the lower part of the result is stored in the destination operand and CF and OF are
set to 1. If the result fits in the destination operand, OF and CF are 0.
Three Operands: The first operand Reg 16\32 is the result of the signed multiplication of the second operand Reg\Mem 16\32 and the third
operand Imm 8\16\32. If the result is greater than the first operand, only the lower part of the result is stored in the destination operand and CF
and OF are set to 1. If the result fits in the destination operand, OF and CF are 0.

DIV o s z a c p
Unsigned Divide modulo, Performs an division of AH:AL\DX:AX\EDX:EAX modulo the Reg\Mem 8\16\32 in the operand and stores the quotient in
AL\AX\EAX register and the remainder in the AH\DX\EDX register. The operation fails with a divide error if the quotient overflows the AL\AX\EAX
register. All flags remain unchanged. If AH:AL = 0x01FD and BL = 0xFF, DIV BL yields AH = 0x1FD mod 0xFF = 0xFE and AL = 0x1FD ÷ 0xFF = 1.

IDIV o s z a c p
Signed Divide, Performs an signed division of AH:AL\DX:AX\EDX:EAX modulo the Reg\Mem 8\16\32 in the operand and stores the quotient in
AL\AX\EAX register and the remainder in the AH\DX\EDX register. The remainder always keeps the sign of the dividend. The operation fails with a
divide error if the quotient overflows the AL\AX\EAX register. All flags remain unchanged. If AH:AL = 0xFFF2 / -14 and BL = 0x04, DIV BL yields AH
= 0xFFF2 / -14 mod 0x04 = 0xFE / -2 and AL = 0xFFF2 / -14 ÷ 0x04 = 0xFD / -3.

INC O S Z A c P Increment by 1, Increases the operand Reg\Mem 8\16\32 by one. The CF is not changed, while the other flags are set depending on the result of
the operation. If a Reg8\16\32 should be incremented depending on the C-Flag, ADC Reg8\16\32, 0 is faster.

DEC O S Z A c P Decrement by 1, Decreases the operand Reg\Mem 8\16\32 by one. The CF is not changed, while the other flags are set depending on the result
of the operation. If a Reg8\16\32 should be decremented depending on the C-Flag, SBB Reg8\16\32, 0 is faster.

XADD O S Z A C P
Exchange and Add, Adds the first and second operand and saves the result in a temporary register. Then the Reg\Mem 8\16\32 from the
destination register is written to the source operand Reg 8\16\32. Finally the result of the addition in the temporary register is saved in the
destination register. All flags are set according to the result in the destination operand.

Logic operations like AND, OR, XOR, NOT and NEG as well as Bit shifting, rolling, counting and
scanning

AND
OF and CF = 0
SF = MSB of

dest op.
PF is set if 2n

set bits in
destination,

 AF unaffected

Logical AND, Performs a bitwise AND between destination and source operand and stores the result in the destination operand. The operands
(dest \ source) can be Reg8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Mem 8\16\32.

OR Logical OR, Performs a bitwise OR between the first and second operand and stores the result in the destination operand. The operands (dest \
source) can be Reg 8\16\32 and Reg\Mem\Imm 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32

XOR Logical XOR, Performs a bitwise XOR between the first and second operand and stores the result in the destination operand. The operands (dest \
source) can be Reg 8\16\32 and Reg\Mem\Imm 8\16\32 or Mem 8\16\32 and Reg\Imm 8\16\32

TEST
Logical Compare, Performs a bitwise AND between destination and source operand without storing the result in the destionation operand. The
operands (dest \ source) can be Reg8\16\32 and Imm\Reg\Mem 8\16\32 or Mem 8\16\32 and Reg\Mem 8\16\32. The SF, ZF and PF are set
according to the result.

NEG O S Z A C P
Two's Complement Negation, Performs a two's complement on the Reg\Mem 8\16\32 in the operand. The operation inverts all bits in the
operand by XORing them by 1 and then adds 1 to the result of the XOR operation. The operation changes the sign of signed binary values in which
+127 is represented by 0x7F, +1 by 0x01, 0 by 0x00, -1 by 0xFF, -2 by FE and -127 by 0x80. The one's complement NOT is used to change the
sign in binary values which 0 is represented both by 0x00 and 0xFF. So the two's complement of -19 or 0xED is +19 or 0x13.

NOT o s z a c p
One's Complement Negation, Performs a one's complement on the Reg\Mem 8\16\32 in the operand. The operation inverts all bits in the
operand by XORing them by 1. The operation changes the sign of signed binary values in which +127 is represented by 0x7F, +1 by 0x01, zero is
represented both by 0x00 and 0xFF, -1 by 0xFE and -127 by 0x80.

ROL
ROR

OF is defined in
1-bit shifts by
MSB XOR CF
CF is the bit
shifted out of

Rotate register, Rotates the Reg\Mem 8\16\32 in the first operand by the number of bits specified by Imm8 or the CL register in the second
operand without using the carry flag. Only the last 5 bits of the second operand are used which limits the the rotation of the first operand to 0-31
bits. ROR is used for right rotations, while ROL is used for left rotations. The CF is defined by the state of the MSB/LSB after a shift, the ROL
instruction takes the CF from the MSB, while the ROR instruction takes the LSB. The OF is defined in 1-bit shift operations as the result of the MSB
of the destination operand XOR CF.

the register,
s z a p

RCL
RCR

Rotate register trough Carry Flag, Rotates the Reg\Mem 8\16\32 in the first operand by the number of bits specified by Imm8 or the CL
register in the second operand without using the carry flag. Only the last 5 bits of the second operand are used which limits the the rotation of the
first operand to 0-31 bits. ROR is used for right rotations, while ROL is used for left rotations. The OF is defined in 1-bit shift operations as the result
of the MSB of the destination operand XOR CF.

SAL
SHL OF is only set in

1-bit shifts if the
sign changes,
CF is the bit
shifted out of
the register,
 S Z a P

Shift Left, The Reg\Mem 8\16\32 in the first operand is shifted to the left by the number of bits specified by Imm8 or the CL register in the second
operand. The amount of shifted bits is filled with zeros from the right, while the last bit which is shifted left-out of the register is stored in the CF.
The OF is defined in 1-bit shift operations as the result of the MSB of the destination operand XOR CF. The operation can be used to multiply the
first operand by 2n, n is the value in the second operand.

SAR
Arithmetic Shift Right, The Reg\Mem 8\16\32 in the first operand is shifted to the right by the number of bits specified by Imm8 or the CL
register in the second operand. The MSB is kept as sign and the amount of shifted bits is inserted as zeros right next to the MSB, while the last bit
which is shifted right-out of the register is stored in the CF. The OF is defined in 1-bit shift operations as the MSB of the destination operand. The
operation can be used to divide the signed value in first operand by 2n, n is the value in the second operand.

SHR
Logical Shift Right, The Reg\Mem 8\16\32 in the first operand is shifted to the right by the number of bits specified by Imm8 or the CL register in
the second operand. The amount of shifted bits is inserted as zeros from the left, while the last bit which is shifted left-out of the register is stored
in the CF. The OF is defined in 1-bit shift operations as the MSB of the destination operand. The operation can be used to divide unsigned values in
first operand by 2n, n is the value in the second operand.

SHLD
OF is only set in
1-bit shifts, if the

sign changes,
CF is the LSB
shifted out of
the register,
 S Z a P

Double Precision Shift Left, The Reg\Mem 16\32 in the first operand and the Reg 16\32 of the second operand is shifted to the left by the
number of bits specified by Imm8 or the CL register in the third operand. The amount of shifted bits is inserted as zeros from the right into the
second operand and the bits are shifted trough the second into the first operand, while the last bit which is shifted left-out of the first operand is
stored in the CF.

SHRD
Double Precision Shift Right, The Reg\Mem 16\32 in the first operand and the Reg 16\32 of the second operand is shifted to the right by the
number of bits specified by Imm8 or the CL register in the third operand. The amount of shifted bits is inserted as zeros from the left into the
second operand and the bits are shifted trough the second into the first operand, while the last bit which is shifted right-out of the first operand is
stored in the CF.

BSF o s Z a c p
Bit Scan Forward, Scans the source operand for the least significant set bit, if found, the bit-index (number of the set bit) is stored in the
destination operand. The operands (dest \ source) can be Reg16\32 and Reg\Mem 16\32. If the source operand is zero, the ZF is set and the dest
operand is undefined.

BSR o s Z a c p
Bit Scan Reverse, Scans the source operand for the most significant set bit, if found, the bit-index (number of the set bit) is stored in the
destination operand. The operands (dest \ source) can be Reg16\32 and Reg\Mem 16\32. If the source operand is zero, the ZF is set and the dest
operand is undefined.

POPCNT O=0 S=0 Z
 A=0 C=0 P=0

Count the Number of Set Bits / Horizontal Checksum, Counts the number of set bits in a Reg\Mem 16\32 location of the second operand and
stores the result in the Reg16\32 of the first operand. The OF, SF AF, CF and PF are cleared, ZF is cleared if the result is zero.

BT

 o s z a C p
C-Flag is a bit
from the first

operand, the bit
position is

selected by the
second operand.

Bit Test, Selects a bit from Reg\Mem 16\32 (first operand) and a bit position form Reg\Mem 16\32 or Imm8 (second operand) and stores the bit in
the C-Flag. If bit position is greater than the size of the first operand, the captured bit position is modulo the size of the first operand. So if the first
operand is a 32 bit register and the bit position is 38, bit #6 is taken, 38 mod 32 = 6)

BTS
Bit Test and Set, Selects a bit from the first operand Reg\Mem 16\32 and a bit position form the second operand Reg\Mem 16\32 or Imm8 and
stores the bit in the C-Flag. The selected bit in the first operand is then set to 1. If the bit position is greater than the size of the first operand, the
position is modulo the size of the first operand. So if the first operand is a 16 bit register, bit position is 59, so bit #11 is taken, 59 mod 36 = 11

BTR
Bit Test and Reset, Selects a bit from a Reg\Mem 16\32 in the first operand and a bit position form a Reg\Mem 16\32 or Imm8 in the second
operand and stores the bit in the C-Flag. The selected bit in the first operand is then set to 0. If thebit position is greater than the size of the first
operand, the position is modulo the size of the first operand. So if the first operand is a 16 bit register, bit position is 59, so bit #11 is taken, 59
mod 36 = 11

BTC
Bit Test and Complement, Selects a bit from the first operand Reg\Mem 16\32 and a bit position form the second operand Reg\Mem 16\32 or
Imm8 and stores the bit in the C-Flag. The bit selected in the first operand is then complemented. If bit position is greater than the size of the first
operand, the bit position is modulo the size of the first operand. So if the first first operand is a 16 bit register, bit position is 59, so bit #11 is
taken, 59 mod 36 = 11

Data Conversion Instructions

AAA o s z A C p
ASCII Adjust After Addition, Converts the sum of 2 unpacked BCD values in AX to proper unpacked BCD values written back to AX. If the low
nipple in the AL register is bigger than 9 or AF is set, AF and CF are set, 6 is added to AL and AH is incremented by 1. This causes an overflow in
the low nipple of AL which ends up with the correct LSD of the BSD value in the low nipple of AL. The high nipple of AL is cleared. Eg. AX=0x101F,
AAA yields AH = AH+1 = 0x11, AL = (AL+5) AND 0x0F = 0x05

DAA o S Z A C P
Decimal Adjust AL after Addition, Converts the sum of 2 packed BCD values in AL to proper packed BCD values written back to AL. If the low
nipple of AL is greater than 9 or AF is set, 6 is added to AL and AF is set, so that a the low nipple overflows and causes a carry into the higher
nipple. If AL is greater than 0x99, 0x60 is added to AL, so that AL overflows and CF is set.

AAS o s z A C p
ASCII Adjust AL After Subtraction, Converts the subtraction result of 2 unpacked BCD values in AX to proper unpacked BCD values written to
AX. If the low nipple in the AL register is bigger than 9 or AF is set, AF and CF are set, 6 is subtracted from AL and AH is decremented by 1. This
causes an overflow in the low nipple of AL which ends up with the correct LSD of the BSD value in the low nipple of AL. The high nipple of AL is
cleared.

DAS o S Z A C P
Decimal Adjust AL after Subtraction, Converts the subtraction result of 2 packed BCD values in AL to proper packed BCD values written back
to AL. If the low nipple of AL is greater than 9 or AF is set, 6 is subtracted from AL and AF is set, so that a the low nipple overflows and causes a
carry into the higher nipple. If AL is greater than 0x99, 0x60 is subtracted from AL, so that AL overflows and CF is set.

AAM o S Z a c P
Convert Binary to BCD, Converts a binary value in AL to two unpacked BCD digits in AH (MSD) and AL (LSD) with a base specified by the imm8
byte. SF, ZF and PF are set according to the result in AL. (imm8=0x0A is for decimal and imm8=0x08 for octal base) Eg. AAM 8 sets AH=AL÷ 8
and AL=AL mod 8

AAD o S Z a c P
Convert BCD to Binary, Converts 2 unpacked BCD digits in AH (MSD) and AL with a base specified by the imm8 byte to a binary value in AL, AH
is set to zero. SF, ZF and PF are set according to the result in AL. (imm8=0x0A is for decimal and imm8=0x08 for octal base) Eg. AAD 8 sets AL to
AL+(8*AH) and AH=0

BSWAP o s z a c p Byte Swap, Swaps bits 7-0 with bits 31-24 and bits 15-8 with bits 23-16, This instruction converts little endian values to big endian values.

CBW
CWDE o s z a c p

Convert Byte to Word / Convert Word to Dword, Sign extends the byte in AL to a word in AX or the word in AX to a doubleword in EAX. The
sign or MSB of AL\AX is copied to every bit in AH or the high word of EAX.

CWD
CDQ

Convert Word to Doubleword
Convert Doubleword to Quadword

String instructions

MOVS
MOVSB
MOVSW
MOVSD

 o s z a c p Move Data from String to String, Copies the byte (MOVSB), word (MOVSW) or dword (MOVSD) from the source memory location pointed by
DS:ESI in 32 bit code or by DS:SI in 16 bit code to the destination memory location pointed by ES:EDI or ES:DI. The assumed ES segment prefix of
the source operand can be overridden by specifying a segment like CS, DS, SS, FS or GS. After the operation, the (E)SI and (E)DI registers are
incremented (if DF=1) or decremented (if DF=0) by the size of the copied value. Like in the other string operations INS, OUTS, LODS and STOS, the
REP prefix can be used to repeat the MOVS instruction until the ECX counter is decremented to zero. All flags remain unchanged. So if ECX=20,
REP MOVS byte ptr [EDI], byte ptr CS:[ESI] copies 20 bytes from CS:[ESI] to ES:[EDI].

LODS
LODSB
LODSW
LODSD

Load String, Copies the byte (MOVSB), word (MOVSW) or dword (MOVSD) from the source memory location pointed by DS:ESI in 32 bit code or by
DS:SI in 16 bit code to the destination memory location pointed by ES:EDI or ES:DI. The assumed ES segment prefix of the source operand can be
overridden by specifying a segment like CS, DS, SS, FS or GS. After the operation, the (E)SI and (E)DI registers are incremented (if DF=1) or
decremented (if DF=0) by the size of the copied value. Like in the other string operations INS, OUTS, LODS and STOS, the REP prefix can be used
to repeat the MOVS instruction until the ECX counter is decremented to zero. All flags remain unchanged.

STOS
STOSB
STOSW
STOSD

Store String, Copies the byte (MOVSB), word (MOVSW) or dword (MOVSD) from the source memory location pointed by DS:ESI in 32 bit code or
by DS:SI in 16 bit code to the destination memory location pointed by ES:EDI or ES:DI. The assumed ES segment prefix of the source operand can
be overridden by specifying a segment like CS, DS, SS, FS or GS. After the operation, the (E)SI and (E)DI registers are incremented (if DF=1) or
decremented (if DF=0) by the size of the copied value. Like in the other string operations INS, OUTS, LODS and STOS, the REP prefix can be used
to repeat the MOVS instruction until the ECX counter is decremented to zero. All flags remain unchanged.

OUTS
OUTSB
OUTSW
OUTSD

Output String to Port,

INS
INSB
INSW
INSD

Input from Port to String,

REP
 o s z a c p Repeat String Operation Prefix, Repeat the string operations INS, OUTS, MOVS, LODS and STOS after the REP prefix until the preloaded ECX

counter has reached zero. The pointer register (E)SI and (E)DI are incremented (if DF=1) or decremented (if DF=0) after each cycle by the size of
the copied value. All flags remain unchanged.

SCAS
SCASB
SCASW
SCASD

Scan String,

CMPSX Compare String Operands,

REPZ
REPNZ

Repeat String Operation Prefix,

Data Transfer and Adressing
MOV o s z a c p

Move, Copies the second operand into the first operand. The operands (dest \ source) can be Reg 8\16\32 and Reg\Mem\Imm 8\16\32 or Mem
8\16\32 and Reg\Imm 8\16\32. Furthermore it can be used to copy the contents of segment registers into Reg\Mem 16 or to copy a Reg\Mem 16
into a segment register. All flags remain unchanged.

CMOV

 o s z a c p Conditional Move, CMOVcc checks the state of the status flags and performs a mov operation if the condition is true. cc specifies the tested
condition. The operands (dest \ source) can be Reg 16\32 and Reg\Mem 16\32
CMOVB, Move if below (CF=1) CMOVO, Move if overflow (OF=1) CMOVS, Move if sign (SF=1) CMOVLE, Move if less or equal

(ZF=1 or SF≠OF)
CMOVAE, Move if above or equal
(CF=0)

CMOVNO, Move if not overflow
(OF=0)

CMOVNS, Move if not sign (SF=0) CMOVNLE, Move if not less or
equal (ZF=0 and SF=OF)

CMOVE, Move if equal \ zero (ZF=1) CMOVP, Move if parity (PF=1) CMOVGE, Move if greater or equal
(SF=OF)

CMOVBE, Move if below or
equal (CF=1 or ZF=1)

CMOVNE, Move if not equal (ZF=0) CMOVNP, Move if not parity (PF=0) CMOVL, Move if less (SF\OF) CMOVA, Move if above (CF=0
and ZF=0)

MOVSX
MOVSXD

Move with Sign-Extension,

MOVZX Move with Zero-Extend,

MOVBE Move Data After Swapping Bytes,

XCHG Exchange Register\Memory with Register,

CMPXCHG
CMPXCHG, Compare and Exchange,
CMPXCHG8B, Compare and Exchange 8 Bytes

PUSH Push Word, Doubleword or Quadword Onto the Stack,

POP Pop a Value from the Stack,

PUSHA
PUSHAD

Push All General-Purpose Registers, Pushes all ge

POPA
POPAD

Pop All General-Purpose Registers,

Status Flag Operations
CLC o s z a C=0 p Clear Carry Flag, Clears the carry flag, carry flag is set to zero, all other flags are unaffected.
CMC o s z a NEG C p Complement Carry Flag, Complements the carry flag, carry flag is XOR'd by one, all other flags are unaffected.
STC o s z a C=1 p Set Carry Flag, Sets the carry flag, carry flag is set to one, all other flags are unaffected.
CLI o s z a c p I=0 Clear Interrupt Flag, Clears the interrupt flag, interrupt flag is set to zero, all other flags are unaffected.
STI o s z a c p I=1 Set Interrupt Flag, Sets the interrupt flag, interrupt flag is set to one, all other flags are unaffected.
CLD o s z a c p D=0 Clear Direction Flag, Clears the direction direction, carry flag is set to zero, all other flags are unaffected.
STD o s z a c p D=1 Set Direction Flag, Sets the direction flag, direction flag is set to one, all other flags are unaffected.

LAHF o s z a c p
Save Flags into AH, Copies the lower byte of the EFLAGS register into the AH register. The SF is stored in bit 7 of AH, ZF in bit 6, AF in bit 4, CF
in bit 2 and PF in bit 0. The reserved bits 1, 3 and 5 of the EFLAGS register are also copied into AL. The Flags in the EFLAGS register remain
unchanged.

SAHF o S Z A C P Copy AH into Flags, Copies the AH register into the lower byte of the EFLAGS register. The SF is stored in bit 7, ZF in bit 6, AF in bit 4, CF in bit 2
and PF in bit 0. The higher part of EFLAGS and the reserved bits 1, 3 and 5 are unaffected.

PUSHF
PUSHFD o s z a c p

Push EFLAGS onto Stack, Saves the EEFLAGS register on the stack and decrements the stackpointer ESP by the size of the saved operand.
PUSHF only pushes the lower word of the EFLAGS register while the PUSHFD instruction pushes the whole 32 bit EFLAG register on the stack.
Look on the frontpage of this manual to see which bit refers to which flag.

POPF
POPFD O S Z A C P

Pop Stack into EFLAGS, Loads the EFLAGS register with a word or dword from the stack and decreases the stackpointer by the size of the
loaded value. POPF loads a word from the stack into the lower word of the EFLAGS register while the POPFD instruction replaces the whole
EFLAGS register by a dword from the stack. Look on the frontpage of this manual to see which bit refers to which flag.

Branch Instructions (Jumps, Calls, Address Calculation)
CALL

Call Procedure, The call instruction jumps to the location specified by the operand and pushes a return address onto the stack. The jump location is
either absolute or relative to the current location.
Near Call:

IRET
IRETD

Interrupt Return

JMP Jump

Jcc Jump if Condition Is Met,

RET Return from Procedure

LOOP
LOOPcc

Loop According to ECX Counter

LEA Load Effective Address,

RSM Resume from System Management Mode
BOUND Check Array Index Against Bounds
ENTER Make Stack Frame for Procedure Parameters
LEAVE High Level Procedure Exit
SYSCALL Fast System Call
SYSENTER Fast System Call
SYSEXIT Fast Return from Fast System Call
SYSRET Return From Fast System Call

System Control Instructions
IN Input from Port
OUT Output to Port
INT Call to Interrupt Procedure
PAUSE Spin Loop Hint
HLT Halt
NOP No Operation
WAIT
FWAIT

Wait

CLFLUSH Flush Cache Line
PREFETCH
h

Prefetch Data Into Caches

INVD Invalidate Internal Caches
WBINVD Write Back and Invalidate Cache
INVLPG Invalidate TLB Entry
UD2 Undefined Instruction

Task Management, Segmentation and Virtualisation
LGDT Load Global Descriptor Table Register
LLDT Load Local Descriptor Table Register
LIDT Interrupt Descriptor Table Register
SGDT Store Global Descriptor Table Register
SLDT Store Local Descriptor Table Register
SIDT Store Interrupt Descriptor Table Register

LFENCE Load Fence
SFENCE Store Fence
LMSW Load Machine Status Word
SMSW Store Machine Status Word

LOCK Assert LOCK# Signal Prefix

MFENCE Memory Fence
MONITOR Set Up Monitor Address

LAR Load Access Rights Byte
LDS
LES
LFS
LGS
LSS

Load Far Pointer

LSL Load Segment Limit

LTR Load Task Register
STR Store Task Register

SWAPGS Swap GS Base Register
ARPL Adjust RPL Field of Segment Selector

VERR\VER
W

Verify a Segment for Reading or Writing

Special Registers
CLTS Clear Task-Switched Flag in CR0
CPUID CPU Identification
RDMSR Read from Model Specific Register
RDPMC Read Performance-Monitoring Counters
RDTSC Read Time-Stamp Counter
RDTSCP Read Time-Stamp Counter and Processor ID

WRMSR Write to Model Specific Register
XGETBV Get Value of Extended Control Register
XLAT
XLATB

Table Look-up Translation

XRSTOR Restore Processor Extended States
XSAVE Save Processor Extended States
XSETBV Set Extended Control Register

X87 Floating Point Unit
Control Instructions
FCLEX\FN
CLEX

Clear Exceptions

FDECSTP Decrement Stack-Top Pointer
FFREE Free Floating-Point Register
FINCSTP Increment Stack-Top Pointer
FINIT\FNIN
IT

Initialize Floating-Point Unit

FLDENV Load x87 FPU Environment
FNOP No Operation
FRSTOR Restore x87 FPU State
FSAVE\FN
SAVE

Store x87 FPU State

FSTENV\F
NSTENV

Store x87 FPU Environment

FSTSW\FN
STSW

Store x87 FPU Status Word

FXRSTOR Restore x87 FPU, MMX , XMM, and MXCSR State
FXSAVE Save x87 FPU, MMX Technology, and SSE State

Data Transfer Instructions
FCMOVcc Floating-Point Conditional Move
FILD Load Integer
FIST\FISTP Store Integer
FISTTP Store Integer with Truncation
FLD Load Floating Point Value
FLD1\FLD
L2T\FLDL2
E\FLDPI\FL
DLG2\FLD
LN2\FLDZ

Load Constant

FLDCW Load x87 FPU Control Word
FST\FSTP Store Floating Point Value
FSTCW\FN
STCW

Store x87 FPU Control Word

Data Conversion Instructions
FABS Absolute Value
FBLD Load Binary Coded Decimal
FBSTP Store BCD Integer and Pop
FXCH Exchange Register Contents
FXTRACT Extract Exponent and Significand

Arithmetic Instructions

FADD
FADD
FIADD

Add

FDIV\FDIV
P\FIDIV

Divide

FDIVR\FDI
VRP\FIDIV
R

Reverse Divide

FCHS Change Sign
FMUL\FMU
LP\FIMUL

Multiply

FPREM Partial Remainder
FPREM1 Partial Remainder

FRNDINT Round to Integer
FSUB\FSU
BP\FISUB

Subtract

FSUBR\FS
UBRP\FISU
BR

Reverse Subtract

Trigonometric Instructions
FCOS Cosine
FPATAN Partial Arctangent
FPTAN Partial Tangent
FSIN Sine

Logarithmic and Exponential Instructions
F2XM1 Compute 2x–1

FSCALE Scale
FSINCOS Sine and Cosine
FSQRT Square Root
FYL2X Compute y ∗ log2x
FYL2XP1 Compute y ∗ log2(x +1)

Comparison instructions
FCOMI
FCOMIP
FUCOMI
FUCOMIP

Compare Floating Point Values and Set EFLAGS

FICOM
FICOMP

Compare Integer

FTST TEST
FUCOM\FU
COMP\FUC
OMPP

Unordered Compare Floating Point Values

FXAM Examine ModR\M

MMX Instructions
Control Instructions
EMM
S

Empty MMX Technology State

MMX and SSE Instructions
Misc and State Management Instructions

Basic Arithmetic (Addition, Subtraction, Multiplication and Division)
ADDPD SSE2 O,U,I,P,D Add Packed Double-Precision Floating-Point Values, Adds 2 floating point qwords XMM \Mem128 [127:64] and XMM \

Mem128 [63:0] from the second operand to XMM[127:64] and XMM[63:0] in the first operand.

ADDPS SSE1 O,U,I,P,D
Add Packed Single-Precision Floating-Point Values, Adds 4 floating point dwords XMM\Mem128 [127:96], XMM \ Mem128
[95:64], XMM\Mem128 [63:32], XMM\Mem128 [31:0] from the second operand to XMM[127:96], XMM[95:64], XMM[63:32],
XMM[31:0] register in the first operand.

ADDSD SSE2 O,U,I,P,D Add Scalar Double-Precision Floating-Point Value, Adds low floating point qword from the second operand XMM[63:0] \
Mem64 to the low qword XMM[63:0] in the first operand, The high qword XMM[127:64] in the first operand remains unchanged.

ADDSS SSE1 O,U,I,P,D Add Scalar Single-Precision Floating-Point Value, Adds low floating point dword from the second operand XMM[31:0] \
Mem32 to the low dword XMM[31:0] in the first operand, XMM[127:32] of the first operand remain unchanged.

HADDPD Packed Double-FP Horizontal Add
HADDPS Packed Single-FP Horizontal Add
PADDB
PADDW
PADDD

Add Packed Integers

PADDQ Add Packed Quadword Integers
PADDSB
PADDSW

Add Packed Signed Integers with Signed Saturation

PADDUSB
PADDUSW

Add Packed Unsigned Integers with Unsigned Saturation

PHADDW
PHADDD

Packed Horizontal Add

SUBPD SSE2 Subtract Packed Double-Precision Floating-Point Values,

SUBPS SSE1 Subtract Packed Single-Precision Floating-Point Values,

SUBSD SSE2 Subtract Scalar Double-Precision Floating-Point Values,

SUBSS SSE1 Subtract Scalar Single-Precision Floating-Point Values,
HSUBPD Packed Double-FP Horizontal Subtract
HSUBPS Packed Single-FP Horizontal Subtract
PSUBB
PSUBW
PSUBD

Subtract Packed Integers

PSUBQ Subtract Packed Quadword Integers
PSUBSB
PSUBSW

Subtract Packed Signed Integers with Signed Saturation

PSUBUSB
PSUBUSW

Subtract Packed Unsigned Integers with Unsigned Saturation

MULPD SSE2 Multiply Packed Double-Precision Floating-Point Values,

MULPS SSE1 Multiply Packed Single-Precision Floating-Point Values,

MULSD SSE2 Multiply Scalar Double-Precision Floating-Point Values,

MULSS SSE1 Multiply Scalar Single-Precision Floating-Point Values,
PMULDQ Multiply Packed Signed Dword Integers
PMULHUW Multiply Packed Unsigned Integers and Store High Result
PMULHW Multiply Packed Signed Integers and Store High Result
PMULLD Multiply Packed Signed Dword Integers and Store Low Result
PMULLW Multiply Packed Signed Integers and Store Low Result
PMULUDQ Multiply Packed Unsigned Doubleword Integers

DIVPD SSE2 Divide Packed Double-Precision Floating-Point Values,

DIVPS SSE1 Divide Packed Single-Precision Floating-Point Values,

DIVSD SSE2 Divide Scalar Double-Precision Floating-Point Values,

DIVSS SSE1 Divide Scalar Single-Precision Floating-Point Values,

Mixed Arithmetic (AddSub
ADDSUBPD SSE3 O,U,I,P,D Packed Double-Precision Floating-Point Add\Subtract, Adds high floating point qword XMM\Mem128[127:64] of second operand to

the high qword XMM\Mem128[127:64] of first operand and subtracts the low floating point qword XMM\Mem128[63:0] of second
operand from low qword XMM[63:0] of first operand. XMMdest = XMMdest[127:64] + XMM\Mem128src[127:64], XMMdest[63:0] -
XMM\Mem128src[63:0]

ADDSUBPS SSE3 O,U,I,P,D Packed Single-Precision Floating-Point Add\Subtract, Adds floating point dwords XMM\Mem128 [127:96] and XMM\Mem128[63:32]
of second operand to the dwords XMM[127:96] and XMM[63:32] of first operand and subtracts the floating point dwords
XMM\Mem128[95:64] and XMM\Mem128[31:0] of second operand from dwords XMM[95:64] and XMM[31-0] of first operand.
XMMdest = XMMdest[127:96] + XMM\Mem128src[127:96], XMMdest[95:64] – XMM\Mem128src[95:64], XMMdest[63:32] +
XMM\Mem128src[63:32], XMMdest[31:0] - XMM\Mem128src[31:0]

PMADDUBSW Multiply and Add Packed Signed and Unsigned Bytes
PMADDWD Multiply and Add Packed Integers

Exponential, Logarithmic and Square Root Calculation
RSQRTPS Compute Reciprocals of Square Roots of Packed Single- Precision Floating-Point Values
RSQRTSS Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
SQRTPS Compute Square Roots of Packed Single-Precision Floating- Point Values
SQRTSD Compute Square Root of Scalar Double-Precision Floating- Point Value
SQRTSS Compute Square Root of Scalar Single-Precision Floating- Point Value

DPPD Dot Product of Packed Double Precision Floating-Point Values
DPPS Dot Product of Packed Single Precision Floating-Point Values

MPSADBW Compute Multiple Packed Sums of Absolute Difference

Data Comparison

PHADDSW Packed Horizontal Add and Saturate
PHMINPOSUW Packed Horizontal Word Minimum
PHSUBW
PHSUBD

Packed Horizontal Subtract

PHSUBSW Packed Horizontal Subtract and Saturate

PSADBW Compute Sum of Absolute Differences

Data Shuffling
PSHUFD Shuffle Packed Doublewords
PSHUFHW Shuffle Packed High Words
PSHUFLW Shuffle Packed Low Words
PSHUFW Shuffle Packed Words
SHUFPD Shuffle Packed Double-Precision Floating-Point Values
SHUFPS Shuffle Packed Single-Precision Floating-Point Values

Internal Instructions:

Data Packing Instructions:
PABSB
PABSW
PABSD

Packed Absolute Value

PACKSSWB
PACKSSDW

Pack with Signed Saturation

PACKUSDW Pack with Unsigned Saturation
PACKUSWB Pack with Unsigned Saturation
PALIGNR Packed Align Right
PAVGB
PAVGW

Average Packed Integers

PSIGNB
PSIGNW
PSIGND

Packed SIGN

PEXTRB
PEXTRD
PEXTRQ

Extract Byte\Dword\Qword

PEXTRW Extract Word
PMULHRSW Packed Multiply High with Round and Scale
PUNPCKHBW
PUNPCKHWD

Unpack High Data

PUNPCKHDQ
PUNPCKHQDQ
PUNPCKLBW
PUNPCKLWD
PUNPCKLDQ
PUNPCKLQDQ

Unpack Low Data

RCPPS Compute Reciprocals of Packed Single-Precision Floating- Point Values
UNPCKHPD Unpack and Interleave High Packed Double-Precision Floating-Point Values
UNPCKHPS Unpack and Interleave High Packed Single-Precision Floating-Point Values
UNPCKLPD Unpack and Interleave Low Packed Double-Precision Floating-Point Values
UNPCKLPS Unpack and Interleave Low Packed Single-Precision Floating-Point Values
PMOVSX Packed Move with Sign Extend
PMOVZX Packed Move with Zero Extend
PSHUFB Packed Shuffle Bytes

Control Instructions
LDMXCSR Load MXCSR Register
STMXCSR Store MXCSR Register State

Blending Instructions
BLENDPD SSE4 none Blend Packed Double Precision Floating-Point Values, The last 2 bits in the third operand Imm8[1:0] control whether the two

qwords in XMM\Mem128[127:64] and XMM\Mem128[63:0] of the second operand are written to XMM[127:64] and XMM[63:0] of
the first operand \ destination. If a bit in Imm8[1:0] is set, the source qword is written to the destination, if a bit in Imm8[1:0] is
zero, the qword in the destination is unchanged. Imm8[1] controls bits[127:64], Imm8[0] controls bits[63:0]

BLENDPS SSE4 none Blend Packed Single Precision Floating-Point Values, The last 4 bits in the third operand Imm8[3:0] control whether the 4 dwords in
XMM\Mem128[127:96], XMM\Mem128[95:64], XMM\Mem128[63:32] and XMM\Mem128[31:0] of the second operand are written to
XMM[127:96], XMM[95:64], XMM[63:32] and XMM[31:0] of the first operand \ destination. If a bit in Imm8[3:0] is set, the source
qword is written to the destination, if a bit in Imm8[3:0] is zero, the qword in the destination is unchanged. Imm8[3] controls
bits[127:96], Imm8[2] => bits[95:64], Imm8[1] => bits[63:32], Imm8[0] => bits[31:0],

BLENDVPD SSE4 none Variable Blend Packed Double Precision Floating-Point Values, The 2 bits XMM[127] and XMM[63] of third operand control whether
the two qwords in XMM\Mem128[127:64] and XMM\Mem128[63:0] of the second operand are written to XMM[127:64] and
XMM[63:0] of the first operand \ destination. If a bit in third operand is set, the source qword is written to the destination, if a bit in
the third operand is zero, the qword in the destination is unchanged. XMM[127] controls bits[127:64], XMM[63] controls bits[63:0]

BLENDVPS SSE4 none Variable Blend Packed Single Precision Floating-Point Values, The 4 bits XMM[127], XMM[95], XMM[63] and XMM[31] of third
operand control whether the 4 dwords in XMM\Mem128[127:96], XMM\Mem128[95:64], XMM\Mem128[63:32] and
XMM\Mem128[31:0] of the second operand are written to XMM[127:96], XMM[95:64], XMM[63:32] and XMM[31:0] of the first
operand \ destination. If a bit in the third operand is set, the source qword is written to the destination, if a bit in the third operand
is zero, the qword in the destination is unchanged. XMM[127] controls bits[127:96], XMM[95] => bits[95:64], XMM[63] =>
bits[63:32], XMM[31] => bits[31:0],

PBLENDVB Variable Blend Packed Bytes
PBLENDW Blend Packed Words

EXTRACTPS Extract Packed Single Precision Floating-Point Value
INSERTPS Insert Packed Single Precision Floating-Point Value
MOVHLPS Move Packed Single-Precision Floating-Point Values High to Low
MOVHPS Move High Packed Single-Precision Floating-Point Values
MOVLHPS Move Packed Single-Precision Floating-Point Values Low to High
MOVLPD Move Low Packed Double-Precision Floating-Point Value
MOVLPS Move Low Packed Single-Precision Floating-Point Values

RCPSS Compute Reciprocal of Scalar Single-Precision Floating-Point Values
ROUNDPD Round Packed Double Precision Floating-Point Values
ROUNDPS Round Packed Single Precision Floating-Point Values
ROUNDSD Round Scalar Double Precision Floating-Point Values
ROUNDSS Round Scalar Single Precision Floating-Point Values

Data Transfer Instructions
LDDQU Load Unaligned Integer 128 Bits
MASKMOVDQ
U

Store Selected Bytes of Double Quadword

MASKMOVQ Store Selected Bytes of Quadword
MOVAPD Move Aligned Packed Double-Precision Floating-Point Values
MOVAPS Move Aligned Packed Single-Precision Floating-Point Values

MOVDDUP Move One Double-FP and Duplicate
MOVDQA Move Aligned Double Quadword
MOVDQU Move Unaligned Double Quadword
MOVDQ2Q Move Quadword from XMM to MMX Technology Register
MOVHPD Move High Packed Double-Precision Floating-Point Value

MOVNTDQA Load Double Quadword Non-Temporal Aligned Hint
MOVNTDQ Store Double Quadword Using Non-Temporal Hint
MOVNTI Store Doubleword Using Non-Temporal Hint
MOVNTPD Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
MOVNTPS Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
MOVNTQ Store of Quadword Using Non-Temporal Hint
OVD\MOVQ Move Doubleword\Move Quadword
MOVQ2DQ Move Quadword from MMX Technology to XMM Register
MOVSHDUP Move Packed Single-FP High and Duplicate
MOVSLDUP Move Packed Single-FP Low and Duplicate
MOVSS Move Scalar Single-Precision Floating-Point Values
MOVUPD Move Unaligned Packed Double-Precision Floating-Point Values
MOVUPS Move Unaligned Packed Single-Precision Floating-Point Values
PINSRB\PINSR
D\PINSRQ

Insert Byte\Dword\Qword

PINSRW Insert Word

Comparison Operations
CMPPD SSE2 Compare Packed Double-Precision Floating-Point Values
CMPPS SSE1 Compare Packed Single-Precision Floating-Point Values
COMISD SSE2 Compare Scalar Ordered Double-Precision Floating-

Point Values and Set EFLAGS
COMISS SSE1 Compare Scalar Ordered Single-Precision Floating-

Point Values and Set EFLAGS
CVTDQ2PD Convert Packed dword Integers to Packed

Double-Precision Floating-Point Values
CVTDQ2PS Convert Packed dword Integers to Packed

Single-Precision Floating-Point Values
CVTPD2DQ Convert Packed Double-Precision Floating-Point

Values to Packed dword Integers
CVTPD2PI Convert Packed Double-Precision Floating-Point

Values to Packed dword Integers
CVTPD2PS Covert Packed Double-Precision Floating-Point

Values to Packed Single-Precision Floating-Point Values
CVTPI2PD Convert Packed dword Integers to Packed

Double-Precision Floating-Point Values
CVTPI2PS Convert Packed Dword Integers to Packed Single-PrecisionFP Values
CVTPS2DQ Convert Packed Single-Precision FP Values to PackedDword Integers
CVTPS2PD Convert Packed Single-Precision FP Values to PackedDouble-Precision FP Values
CVTPS2PI Convert Packed Single-Precision FP Values to PackedDword Integers
CVTSD2SI Convert Scalar Double-Precision FP Value to Integer
CVTSD2SS Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value
CVTSI2SD Convert Dword Integer to Scalar Double-Precision FP Value
CVTSI2SS Convert Dword Integer to Scalar Single-Precision FP Value
CVTSS2SD Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value
CVTSS2SI Convert Scalar Single-Precision FP Value to Dword Integer
CVTTPD2DQ Convert with Truncation Packed Double-Precision FPValues to Packed Dword Integers
CVTTPD2PI Convert with Truncation Packed Double-Precision FPValues to Packed Dword Integers
CVTTPS2DQ Convert with Truncation Packed Single-Precision FPValues to Packed Dword Integers
CVTTPS2PI Convert with Truncation Packed Single-Precision FPValues to Packed Dword Integers
CVTTSD2SI Convert with Truncation Scalar Double-Precision FP Valueto Signed Integer
CVTTSS2SI Convert with Truncation Scalar Single-Precision FP Valueto Dword Integer

MAXPD Return Maximum Packed Double-Precision Floating-Point
Values

MAXPS Return Maximum Packed Single-Precision Floating-Point
Values

MAXSD Return Maximum Scalar Double-Precision Floating-Point
Value

MAXSS Return Maximum Scalar Single-Precision Floating-Point Value

MINPD Return Minimum Packed Double-Precision Floating-Point Values
MINPS Return Minimum Packed Single-Precision Floating-Point Values
MINSD Return Minimum Scalar Double-Precision Floating-Point Value
MINSS Return Minimum Scalar Single-Precision Floating-Point Value
PCMPEQB
PCMPEQW
PCMPEQD

Compare Packed Data for Equal

PCMPEQQ Compare Packed Qword Data for Equal

PCMPESTRI Packed Compare Explicit Length Strings, Return Index
PCMPESTRM Packed Compare Explicit Length Strings, Return Mask
PCMPISTRI

Packed Compare Implicit Length Strings, Return Index
PCMPISTRM Packed Compare Implicit Length Strings, Return Mask
PCMPGTB
PCMPGTW
PCMPGTD

Compare Packed Signed Integers for Greater Than

PCMPGTQ Compare Packed Data for Greater Than

PMAXSB Maximum of Packed Signed Byte Integers
PMAXSD Maximum of Packed Signed Dword Integers
PMAXSW Maximum of Packed Signed Word Integers
PMAXUB Maximum of Packed Unsigned Byte Integers
PMAXUD Maximum of Packed Unsigned Dword Integers
PMAXUW Maximum of Packed Word Integers
PMINSB Minimum of Packed Signed Byte Integers
PMINSD Minimum of Packed Dword Integers
PMINSW Minimum of Packed Signed Word Integers
PMINUB Minimum of Packed Unsigned Byte Integers
PMINUD Minimum of Packed Dword Integers
PMINUW Minimum of Packed Word Integers
PTEST Logical Compare
UCOMISD Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
UCOMISS Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS

Bit and Sign Operations (AND, OR, XOR, Bit shifting,)
ANDPS
ANDPD

SSE1
SSE2

none Bitwise Logical AND of XMM[127:0] and XMM[127:0] \ Mem128, Performs a bitwise AND between XMM[127:0] \ Mem128 in the
second operand and the XMM[127:0] in the first operand. Both instructions do the same, but ANDPD is longer and is only
supported in SSE2, so better use ANDPS

ANDNPS
ANDNPD

SSE1
SSE2

none Bitwise Logical AND NOT of XMM[127:0] and XMM[127:0] \ Mem128, Performs a bitwise AND between XMM[127:0] \ Mem128 in
the second operand and the bitwise inverted XMM[127:0] in the first operand. Both instructions do the same, but ANDNPD is
longer and is only supported in SSE2, so better use ANDNPS. XMMdest[127:0] = (NOT XMMdest[127:0]) AND XMMsrc[127:0]

MOVMSKPD Extract Packed Double-Precision Floating-Point Sign Mask
MOVMSKPS Extract Packed Single-Precision Floating-Point Sign Mask
ORPD Bitwise Logical OR of Double-Precision Floating-Point Values
ORPS Bitwise Logical OR of Single-Precision Floating-Point Values
PAND Logical AND
PANDN Logical AND NOT
PMOVMSKB Move Byte Mask
POR Bitwise Logical OR
PSLLDQ Shift Double Quadword Left Logical
PSLLW
PSLLD
PSLLQ

Shift Packed Data Left Logical

PSRAW
PSRAD

Shift Packed Data Right Arithmetic

PSRLDQ Shift Double Quadword Right Logical
PSRLW
PSRLD
PSRLQ

Shift Packed Data Right Logical

PXOR Logical Exclusive OR
XORPD Bitwise Logical XOR for Double-Precision Floating-Point Values
XORPS Bitwise Logical XOR for Single-Precision Floating-Point Values

