
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

 2、Protecting TOP SEH

 MicroSoft has gravely adjusted the code of SetUnhandledExceptionFilter
function. SetUnhandledExceptionFilter is an exported function in kernel32.dll.
it sets a filter of the exception handling callback function. The callback
function didn't replace the exception handling program of default system,
only disposed something in its advance. Finally, the result was sent into
the exception handling program of default system. The course is as equal as
the exception has filtratid once.

 The mode of calling SetUnhandledExceptionFilter function:

 LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter);

 The sole parameter of the function is an address of the callback function
which need to set. The return value is the address of last setting. The
function is not hung before the original callback function again, and that
using the new callback function replace the original callback function. If the
address parameter is specified NULL, then the system throw off the filter, and
the exception is sent to the exception handling program of default system.
Winxp sp2 has gravely changed the function. Before replaced the original callback
function, she encrypt the new address of the callback function first. After then,
she replace the callback function. She decrypt the address before the address
of the original callback function is returned. The function is relatively simple.

.text:7C810386 SetUnhandledExceptionFilter proc near

.text:7C810386 lpTopLevelExceptionFilter = dword ptr 8

.text:7C810386

.text:7C810386 mov edi, edi

.text:7C810388 push ebp

.text:7C810389 mov ebp, esp
 ; here is encrypting the address (lpTopLevelExceptionFilter)
.text:7C81038B push [ebp+ lpTopLevelExceptionFilter]
.text:7C81038E call RtlEncodePointer
 ; and then, exchanged among the encrypted address and the address of the
 ; original callback function, i.e. the encrypted address is written into
 ; a Global variable. Simultaneous, she returned the address of the original
 ; callback function in the Global variable.
.text:7C810393 push eax ; Value
.text:7C810394 push offset Target ; Target
.text:7C810399 call InterlockedExchange
 ; decrypt before the address of the original callback function is returned
 ; since it is encrypted.
.text:7C81039E push eax
.text:7C81039F call RtlDecodePointer
.text:7C8103A4 pop ebp
.text:7C8103A5 retn 4
.text:7C8103A5 SetUnhandledExceptionFilter endp ; sp = -8
.text:7C8103A5
 ; the address of callback function was directly written onto a Global
 ; point ago, didn't handle anything. it is obvious that we can't use again
 ; the Stack Overflow with rewriting the function point ago. Discovered by
 ; the analysis, Winxp sp2 encrypted similarly all of Global point with
 ; the method。The follow is how encrypt the address.

 ; Both of RtlEncodePointer and RtlDecodePointer is the function of ntdll.dll
 ; exported. A point is encrypted by RtlEncodePointer. A point is decrypted
 ; by RtlDecodePointer. Actually, the whole course of encrypting and
 ; decrypting is simple. The encrypting executed XOR between the point and
 ; a random value. The decrypting executed XOR between the point and the
 ; random value.

 ; encrypting: point = point ^ rand
 ; decrypting: point = point ^ rand

 ; rand is a random value who is relating to the process. It is gotten by
 ; calling the ZwQueryInformationProcess function. The random value of every
 ; process is not same.

 ; Here is the code of this two functions.

 ; The code of RtlEncodePointer function is as following:
.text:7C933917 RtlEncodePointer proc near
.text:7C933917 var_4 = dword ptr -4
.text:7C933917 arg_4 = dword ptr 8

part2.txt

Page 1 of 3

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

.text:7C933917

.text:7C933917 mov edi, edi

.text:7C933919 push ebp

.text:7C93391A mov ebp, esp
 ; A random value who is relating to the process is gotten by calling the
 ; ZwQueryInformationProcess function.
.text:7C93391C push ecx
.text:7C93391D push 0
.text:7C93391F push 4
 ; An address of temp variable in stack is gotten here. The random value
 ; is gotten finally will store in the temp variable.
.text:7C933921 lea eax, [ebp+var_4]
.text:7C933924 push eax
.text:7C933925 push 24h ; the number of children function is 0x24.
.text:7C933927 push 0FFFFFFFFh
.text:7C933929 call ZwQueryInformationProcess
 ; The random value is done XOR with the point for encrypting. The course
 ; of decrypting is same as the course of encrypting.
.text:7C93392E mov eax, [ebp+var_4]
.text:7C933931 xor eax, [ebp+arg_4]
.text:7C933934 leave
.text:7C933935 retn 4
.text:7C933935 RtlEncodePointer endp ; sp = 4

 ; The function of RtlDecodePointer is more simple, only jump to
 ; RtlEncodePointer since the course of decrypting is entirely same as the
 ; course of encrypting.

.text:7C93393D RtlDecodePointer proc near
 ; The four following lines is not any effect.
.text:7C93393D mov edi, edi
.text:7C93393F push ebp
.text:7C933940 mov ebp, esp
.text:7C933942 pop ebp
 ; The following line jump to RtlEncodePointer, is equal to call the
 ; function directly.
 ; RtlEncodePointer
.text:7C933943 jmp short RtlEncodePointer
.text:7C933943 RtlDecodePointer endp

 ; ZwQueryInformationProcess call finally a system calling, jump to ring0,
 ; The last calling function in ring0 is NtQueryInformationProcess. The
 ; childen number of calling the function finally is 0x24. The children
 ; number is fetched directly and store into a random value of the process,
 ; and copy it to a temp variable in user stack. If the random value is 0,
 ; then will creat the random value again according to the system time.
 ; Generally, The random value is 0 while the process is just created at
 ; beginning. So it must be made again. Because the random value is
 ; relating to the time which the process created, therefore the random
 ; value can't be guessed. The function is exported in the ntoskrnl.exe.
 ; The code which related to the function is as follow:

PAGE:004970CC loc_4970CC:
 ; The following code got a sole random value of relating to process.
 ; The children function number is 0x24.
PAGE:004970CC cmp edi, edx ; case 0x24
PAGE:004970CE jnz loc_497349
PAGE:004970D4 cmp dword ptr [ebp+8], 0FFFFFFFFh
PAGE:004970D8 jnz loc_4977B8
 ; The following code got the address which will store the random value.
PAGE:004970DE mov eax, large fs:124h
PAGE:004970E4 mov eax, [eax+44h]
PAGE:004970E7 mov [ebp-34h], eax
PAGE:004970EA
PAGE:004970EA loc_4970EA:
PAGE:004970EA mov edi, [ebp-34h]
PAGE:004970ED add edi, 258h
 ; Stored in edi address is a random value which is relating to the process.
 ; Here，the random value is gotten.
PAGE:004970F3 mov eax, [edi]
PAGE:004970F5 test eax, eax
PAGE:004970F7 jz loc_4B2379
 ; If the Random value is 0, then the Random value will be gotten again.
 ; The follow is the course of getting the random value:

 ; 1、The system time is gotten first.

part2.txt

Page 2 of 3

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

 ; 2、The system time is been continuously done XOR with a value in the
 ; system kernel for creating the random value.

PAGE:004B2379
PAGE:004B2379 loc_4B2379:
 ; getting the system time
PAGE:004B2379 lea eax, [ebp-3Ch]
PAGE:004B237C push eax
PAGE:004B237D call KeQuerySystemTime
PAGE:004B2382 db 3Eh
 ; getting a Global variable in the system kernel, The Global variable is
 ; also a random value.
PAGE:004B2382 mov eax, ds:0FFDFF020h
PAGE:004B2388 mov ecx, [eax+518h]
PAGE:004B238E xor ecx, [eax+4B8h]
 ; The random value is done XOR with the system time.
PAGE:004B2394 xor ecx, [ebp-38h]
PAGE:004B2397 xor ecx, [ebp-3Ch]
 ; The result will be stored in the Global variable which is relating to
 ; the process. The address is stored in edi.
PAGE:004B239A mov [ebp-0CCh], ecx
PAGE:004B23A0 mov [ebp-0D4h], edi
PAGE:004B23A6 mov eax, 0
PAGE:004B23AB mov ecx, [ebp-0D4h]
PAGE:004B23B1 mov edx, [ebp-0CCh]
PAGE:004B23B7 cmpxchg [ecx], edx
PAGE:004B23BA push 4
PAGE:004B23BC pop edx
 ; Jump to loc_4970EA, create the random value. If the random value is 0,
 ; then it will be created again.
PAGE:004B23BD jmp loc_4970EA
 ; After the random value is created, it is copied to a temp variable in
 ; user stack. The address of the temp variable is stored in esi.

 ; By this time, The random value which is relating to the time of creating
 ; process has been gotten.
PAGE:004970FD mov dword ptr [ebp-4], 15h
PAGE:00497104 mov [esi], eax
PAGE:00497106 test ebx, ebx
PAGE:00497108 jnz loc_497AA5
PAGE:0049710E jmp loc_4955F5

 ; Here, we have already understood the whole course how get all of the
 ; random value. The random value is relating to the time of process created.
 ; So, we can't guess the random value. But, the random value is born when
 ; the process is created. until the process is die, the random value is
 ; not changed. Hence, if we can get the random value, we can use it before
 ; the process is die. For example, we do XOR between the random value and
 ; the address which we will jump to. We write it into the address of
 ; Top Overflow Handle Exception, then use it as same as used ago.

 ; The method can't be used about the remote overflow. But if we can rewrite
 ; the Import table of the program or the code segment, it is a best status.
 ; The Import table of the system DLL can't be modified. But the Import table
 ; of a program can be modified. So it is possible to use it. If the point
 ; of some functions is existed in the code segment, then we can rewrite it
 ; for using. If the case is existed, it is possible to create a general usage.

part2.txt

Page 3 of 3

