KSMAKE DOCUMENTS

KSmake by Sevag Krikorian.

Version 0.18, 5/27/04

A simple and compact make utility. KSmake will process a specified source makefile.

Usage:

KSmake [/-bjmins?h] macro=value makefile[.kmk] [.ksmake]

Flags:

-jtarget	jumps to target entry point.

-b		builds regardless of dependency dates.

-m		displays date/time

-n		displays commands without execution

-v		verbose display of process and warnings

-i		does not stop after build errors

-? -h		displays help

The flags may be optionally preceded by '/' instead of '-'

A makefile can be typed with or without extension. By default, if KSmake is launched with no arguments, it will look for a makefile called ".ksmake" in the current directory. You can also specify a makefile on the command line. If you do not type in an extension on the specified makefile, KSmake will assume a ".kmk" extension.

Determining jump targets:

	You can specify a jump target within the make script where KSmake will begin execution. Jump targets are defined in the script by using section headers with square brackets. Example of a jump target:

In the script:

[buildall]

On the command line:

KSmake -jbuildall

KSmake will load the makefile and begin executing the commands under the [buildall] section.

If no jump target is specified, KSmake looks for the default [BUILD] section.

Jump targets can also be specified within the makefile, under jump headers using the internal command '#'

For example:

[buildall]

#mylibrary

#myprogram

#link

Once KSmake enters [buildall] it will immediately jump to [mylibrary] and process the commands in that section, if successful, it will then jump to [myprogram] and process that section, finally, if there are no errors so far, it will process the [link] section.

KSmake has the capacity of jumping to targets up to 10 levels deep.

Buidling sources:

	To build sources, KSmake checks for dependencies. You must specify the dependencies in the scriptfile. To do so, you use the internal command '@' at the beginning of a new line. The first filename after '@' is the target file, every other filename on the line (separated by spaces) are the dependencies. If KSmake finds that the target is outdated, it will launch the command line directly below the dependency line.

For example:

[myprogram]

@myprogram.obj myprogram.hla myprogram.hhf

hla -c myprogram.hla

In this scenario, "myprogram.obj" is the target file. KSmake will look if myprogram.obj exists. If not, it will launch the commands on the following line. If "myprogram.obj" exists, KSmake will compare the filetime with the filetimes of all the other files listed on the line, in this case "myprogram.hla" and "myprogram.hhf" if either of these files are newer than "myprogram.obj", KSmake will delete "myprogram.obj" and then launch the command line on the following line.

KSmake will then check to see if "myprogram.obj" was created, reporting an error if it was not. If the target file proves to be newer than the dependencies, KSmake will skip over the next command line and continue executing. In the above example, "hla -c myprogram.hla" would be skipped over and KSmake would processing after that line.

WARNING

	Do not specify a program source code as the comparisson target file. KSmake may delete this file and you will be out a source code. In a future version, I may have KSmake determine the extension of the target file and stop execution, but even then, I would not be able to guess all the possible 'source' code extensions... (.hla.hhf.inc.asm.pas.c.h.cc...) you get the idea.

Forcing KSmake to build:

If you wish to force build all the commandlines despite dependencies, you may specify -b on the KSmake commandline.

Displaying the File Date/Time:

	If you wish to get a visual display of the file date and times that KSmakes looks at during dependencies, you may specify -m flag.

Displaying Commands Without Execution:

	As a useful feature for 'debugging' makefiles, you may specify the -n flag. KSmake will process all makefile and display all the commands on the console screen without executing. You can even specify a redirection of the output into a temporary text file using ">filename":

KSmake -n >debugscript.txt

KSmake will look for a file called ".ksmake" in the current directory, go through the file and output all the commands starting at the [BUILD] jump point into a text file called "debugscript.txt"

Verbose display:

	By default, KSmake will show as little information as possible. Mostly it will only output fatal errors that stop execution and anything outputted by the commands launched by the makefile. To have a more verbose display, you may specify the -v flag on the commandline. KSmake will display each command as it launches them, and any internal warnings generated by KSmake.

Continuing After Error:

	By default, when KSmake encounters an error by one of the programs it launches (ie. Target file not created), KSmake will stop processing the makefile. To force KSmake to continue processing the makefile, even after build errors, specify the -i flag.

	Note tha KSmake will still stop execution if it encounters an internal error.

Displaying a Brief Help:

	To get a brief list of the flags and commandline options, you may specify -h or -? on the command line.

MACROS:

	Macros are a useful feature that make processing makefiles easier, especially if KSmake is launched by a 3rd party program. One may even generate 'generic' makefiles that work automatically with a variety of setups.

The syntax to define a macro is simply: macro=value

In the scriptfile, the macro is used by a '$' character and enclosed in brackets ()

An example of a macro on the commandline:

ksmake mymacro=myprogram myresource=myprogram

Here is how that macro may be used in the .ksmake script file

hla $(mymacro).hla $(myresource).res

KSmake will expand $(mymacro) to "myprogram" in the scriptfile and $(myresource) will also expand to "myprogram" although you can specify any legal value (in this case, it must be any legal characters for a filename), I used the same value in the example because there is a special use for it which I will get to. After the macro expansion, that same line would look like this:

hla myprogram.hla myprogram.res

And now for the reason why I specified two different macros with the same value. If KSmake encounters a macro in the scriptfile which is not defined, KSmake will ignore the macro and the any extension attached to the macro.

Now suppose you do not have a resource file, you can launch KSmake with:

ksmake mymacro=myprogram

KSmake will expand only the "mycamcro" macro and it will leave out the part that has the resouce "$(myresource).res" so that the commandline KSmake will launch looks like this:

hla myprogram.hla

If later, you add a resource file to your program, you can launch KSmake with the resource macro:

ksmake mymacro=myprogram myresource=myprogram

Now, the same line will expand to:

hla myprogram.hla myprogram.res

Macros that appear in the scriptfile, but are undefined will generate a KSmake warning as a remainder (and has a use in debugging scriptfiles). These warnings will not be displayed unless the -v flag is specified.

KSmake has the capacity to remember 100 macros.

Building the Makefile:

The Makefile:

	The makefile may have any filename with any extension. As a convenience, KSmake will automatically look for .ksmake in the current folder so that you may launch KSmake with no arguments.

	Alternatively, you may specify a makefile on the command line. If you type in a filename with no extension, KSmake will assume a ".kmk" extension. This way, you may have multiple makefiles in the same folder.

	The makefile is set up with a series of header titles enclosed in square brackets (somewhat similar to an initialization file). KSmake will read in the entire section between one header block and the next and process all the commands in that section one line at a time.

NOTE:	The makefile section headers are case sensitive.

Reserved Section Headers:

	There are several reserved sections that KSmake looks for for internal setup, you should not use these section names in your own headers. These reserved sections are:

[BUILD]

[SETTINGS]

[MACROS]

All these reserved sections are optional and do not need to be in your makefile for KSmake to function.

The [BUILD] section:

	This section is reserved as a default jump target for KSmake if no jump targets are specified on the command line. KSmake will begin processing the makefile from this location.

The [SETTINGS] section:

	This section is reserved for KSmake command line flags. Here you may specify KSmake command line flags that you wish to be active everytime this script is processed. This saves having to type in commonly used flags every time. Do not use this section to define macros.

The [MACROS] section:

	In this reserved section, you may define macros, one to a line in the same way as you would on the command line: macro=value

Comments in the MakeFile:

	To add comments (or comment out a command), place a semicolon ';' character as the first character on a new line.

Makefile reserved commands:

#<section>	

	Jumps to the specified section and processes the commands there. You may specify another #<section> in the target section, and so on up to 10 levels deep.

@<target> [<dependency1> <dependency2> <dependency_n> ...]

	Specifes a buld target, folowed by a list of dependencies. KSmake will compare the filetimes of each dependency to the filetime of the target. If any dependency is newer, KSmake will delete the target file, if any and then process the line immediately following the line where '@' appears. After that, KSmkae will determine if the new target file was created.

	If the dependencies are older or the same time, KSmake will skip over the line immediately following the line where '@' appears. KSmake compares the last modification time.

	If the target does not exist, KSmake will launch the following line to build the target. If any dependency doesn't exist, KSmake will stop execution with an internal error.

NOTE:	The dependencies are optional. If there are no dependencies listed, KSmake will assume the dependency is the <target> file with an ".obj" extension and compare those. This works only if you are creating an executable with no dependencies.

Example:

@myprogram.exe

Here, KSmake will look for "myprogram.obj" and compare the date of an optionally existing "myprogram.exe" with "myprogram.obj"

WARNING: make sure your target is not a code source file. KSmake may delete this file and you may lose hours if not weeks of work.

$(<macro>)[.extension]

	Specifies a macro with optional extensions. If the macro is defined, KSmake will expand the macro before processing any commands. If the macro is not defined, KSmake will ignore all the characters after the closing bracket up to the first blank space it encounters.

; <comment>

	Specifies a comment line. The ';' character must be the first character of a new line. KSmake will not check for comments on actual execution lines.

Example Makefile:

	What follows is an example of a medium-project makefile. Following that will be a brief description of how to use KSmake to access the makefile and how KSmake will be process the makefile. We will assume that the makefile will be saved as "sample.kmk"

==

[SETTINGS]

-m -v

[MACROS]

debug=-Ddebug

win=-w

res=Sample

[BUILD]

#resource

#lib

#Sample.obj

#functions.obj

#link

#clean

[resource]

@$(res).res $(res).rc

hla -c -@ $(res).rc

[lib]

#makelib

@SampleLib.lib SampleLib.obj Sample.hhf

lib /out:Sample.lib /subsystem:windows SampleLib.obj

[makelib]

@Sample.lib SampleLib.hla

hla -c -@ $(win) $(debug) SampleLib.hla

[Sample.obj]

@Sample.obj Sample.hla Sample.hhf

hla -c -@ $(win) $(debug) Sample.hla

[functions.obj]

@functions.obj functions.hla Sample.hhf

hla -c -@ $(win) $(debug) functions.hla

[link]

@Sample.exe Sample.obj functions.obj $(res).res Sample.lib

link @Sample.link

[clean]

del *.asm

del *.inc

[CLEANALL]

del *.asm

del *.inc

del *.obj

del *.map

del *.lib

[eof]===

To build the main project in this makescript, you can start KSmake with this command line (remember that the file is saved as "sample.kmk"

ksmake sample

-KSmake will append ".kmk" to this and open sample.kmk for processing.

-KSmake first looks for [SETTINGS]. Here, it will find 2 options: -m (display date/time stamp) and -v (verbose display). These will be active for the rest throughout the rest of the source.

-Next KSmake looks for any macros in the [MACROS] section. Here we find 3 macros. KSmake will expand these macros anywhere they appear in the make script.

-Since no jump target is specified, KSmake will begin excution at [BUILD].

In the [BUILD] section, we find a series of jumps that will be processed in sequence.

1.#resource > the script will transfer to the [resource] section.

	- at the resource section, the macros will expand $(res) to Sample.

	- KSmake will look for Sample.res and compare it with Sample.rc

	- If the Sample.rc is newer, KSmake will delete sample.res and execute the 	command line:

	hla -c sample.rc

	- KSmake will then check to see if Sample.res is created.

	- If no build is needed, execution will transfer to the line below

	hla -c sample.rc

	- In this case, it is the end of the section, so execution is returned to 	where the jump command was initiated.

2.#lib > the script will transfer to the [lib] section.

	- here, there is an immediate jump to [makelib], so execution will transfer 	to that section.

	- KSmake will build the lib the same way as the resource section.

	- once done, execution will transfer back to [lib] and continue from there.

NOTE: I did it this way to demonstrate that you may use multiple level jumps. It would have been just as easy to keep al lib sections under one sectoin like so:

[lib]

@Sample.lib SampleLib.hla

hla -c -@ $(win) $(debug) SampleLib.hla

@SampleLib.lib SampleLib.obj Sample.hhf

lib /out:Sample.lib /subsystem:windows SampleLib.obj

3. KSmake will continue jumping to each section and processing the commands there in a similar fashion.

You may notice that the [CLEANALL] section is not jumped to anywhere in the source. This is intentional. You can access the [CLEANALL] section from the command line like so:

KSmake sample -jCLEANALL

Similarily, you can jump to individual sections to build individual parts without running the entire script:

KSmake sample -jlib

This will create sample.lib only.

In this makefile, KSmake will only build based on the file dependencies. You can force KSmake to ignore the dependencies and build everything:

KSmake sample -b

If at any time, you decide that you want to build a release version, you can easily disable the $(debug) by editing sample.kmk and commenting out the debug macro.

;debug=-Ddebug

You can easily reactivate the debug later by deleting the semicolon.

I admit, I am not a great document writer. If anything in this document is not very clear, please contact me with advice on how to make it more cohesive. I'm also open to suggestions and comments about the program.

